
A graph complexity measure based on the spectral analysis of the

Laplace operator

Diego M. Mateos 1,2,3*, Federico Morana3, and Hugo Aimar1,3

1Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina.
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1 Introduction

In this work we introduce a concept of complexity for undirected graphs in terms of the spectral analysis of the
Laplacian operator defined by the incidence matrix of the graph. Precisely, we compute the norm of the vector
of eigenvalues of both the graph and its complement and take their product. Doing so, we obtain a quantity
that satisfies two basic properties that are the expected for a measure of complexity. First, complexity of fully
connected and fully disconnected graphs vanish. Second, complexity of complementary graphs coincide. This
notion of complexity allows us to distinguish different kinds of graphs by placing them in a “croissant-shaped”
region of the plane link density - complexity, highlighting some features like connectivity, concentration, uniformity
or regularity and existence of clique-like clusters. Indeed, considering graphs with a fixed number of nodes, by
plotting the link density versus the complexity we find that graphs generated by different methods take place at
different regions of the plane.

2 The mathematical model

Let G = (V, E ,W) be a simple undirected graph, where V = {1, . . . , n} is the set of vertices or nodes, E =
{e1, . . . , em} ⊂ {{i, j} : i, j ∈ V} is the set of edges and W : V × V → {0, 1} is the adjacency matrix of G with
wij = 1 whenever {i, j} ∈ E and zero otherwise. Since the graph is undirected and simple the matrix W is
symmetric with null diagonal. We will denote i ∼ j when {i, j} ∈ E .

The degree of a vertex j is defined by δ(j) =
∑

i∈V wij . The degree matrix is defined as the diagonal n × n
matrix containing the degrees of the nodes and denoted by D = diag(δ(1), . . . , δ(n)). The Laplacian of the graph
is the lineal operator acting on real or complex functions defined on the nodes, with matrix given by

∆ = W −D. (1)

This operator is symmetric and negative semi-definite. Therefore we can apply the spectral theorem to obtain
an orthonormal basis of ℓ2(V) ∼ Rn of eigenvectors {ψ1, . . . , ψn} of ∆. It is usually called the Fourier basis of
G. The associated eigenvalues {λ1, . . . , λn} satisfy 0 = λ1 ≥ λ2 ≥ · · · ≥ λn. In the following we will refer to the
vector λ = (λ1, . . . , λn) as the spectrum of the graph G. The trace of the Laplacian is a feature of interest for our
further analysis and is given by

∑n
i=1 λi = −2m, where m is the number of edges of G. For a general reference

regarding the spectral theory of the Laplacian on graphs see [1] and references therein.
We may consider equivalent two graphs G and G′ that share the spectrum λ̄. Hence, for G and H two graphs

with the same number n of vertices, the function ds(G,H) =
∥∥λ̄G − λ̄H

∥∥, with λ̄G and λ̄H the spectrum of G
and H respectively and ∥·∥ any norm in Rn, is a distance (metric) between the classes of co-spectrality of G and

H. We shall take the usual (euclidean) norm
∥∥λ̄∥∥ =

(∑n
i=1 |λi|2

)1/2
. We shall refer to ds as the spectral distance.

Notice that since the first eigenvalue λ1 of each graph vanishes, we actually have that ds(G,H) = |Λ̄G − Λ̄H |,
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where Λ̄ = (λ2, ..., λn) and | · | is the euclidean norm in Rn−1. The spectral distance on graphs was considered
before in [2], see also [3].

In order to introduce our definition of spectral complexity of a graph, let us set Z to denote the null graph,
i.e. wij = 0 for every i, j ∈ V, and F to denote the complete graph, i.e. wij = 1 for every i ̸= j. Now we can
define the spectral complexity of a graph G with n vertices as

Cs(G) = ds(G,Z) · ds(G,F )
=

∥∥λ̄G − λ̄Z
∥∥ ∥∥λ̄G − λ̄F

∥∥
= |Λ̄G − Λ̄Z | |Λ̄G − Λ̄F |.

(2)

Two basic premises are behind this definition. The first one is that both, the null graph and the full graph, are
the less complex graphs that can be defined on the vertices set V = {1, ..., n}. The second is that complementary
graphs should have the same complexity.

A second quantity associated to a graph that we shall take into account in our analysis is its link density. The
link density ρ of a simple unidirected graph is the number of actual edges divided by the number of all possible
edges. With our notation

ρ(G) =
2m

n(n− 1)
. (3)

Given a positive integer n we shall display all the possible graphs G built on V = {1, 2, ..., n} in the plane of
the variables ρ(G) and Cs(G). Since the density of a graph G and the density of its complement can be quite
different, actually ρ(G) + ρ(Gc) = 1, it is clear that the link density is not a function of the spectral complexity.
It is also simple to show that graphs with the same density may have different spectral complexity. So neither
ρ is a function of Cs nor Cs is a function of ρ. As could be expected. Nevertheless ρ and Cs are not completely
independent. In fact we empirically determine the region in the region in the plane (ρ, Cs) spanned by all possible
graphs.

The delimitation of the region in the representation plane link density - complexity where all the variety
of graphs take place is not a trivial task to perform theoretically. Here we obtain an empirical approximation
of the upper and lower boundaries, derived after placing a wide variety of graphs generated by random and
deterministic methods. The plane obtained is a croissant-shaped. Figure 1 depicts the croissant-shaped and
the placement of some paradigmatic graphs of 15 vertices. This notion of plane highlight some features like
connectivity, concentration, uniformity or regularity and existence of clique-like clusters

3 Result

Using the plane ρ vs Cs, we analysed three well known stochastic models, the Erdös-Rényi model [4], the Watts-
Strogatz model [5], and the Barabási-Albert model [6] for the different parameter each one. As we shall see, each
of them draws some characteristic pattern contained in the basic croissant shape (see Figure 1b). Finally, as
an application to graphs generated by real measurements, we consider the brain connectivity graphs from two
epileptic patients obtained from magnetoencephalography (MEG) recording, both in a baseline period and in
ictal periods (epileptic seizures). In this case, our definition of complexity could be used as a tool for discerning
between states, by the analysis of differences at distinct frequencies of the MEG recording.
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Figure 1: Spectral complexity vs link density plane. The full line represent the lower and upper limit. (a)
Schematic distribution of the different types of networks for n = 15 on the “croissant-shaped” region. (b)
Overview and comparison of the results obtained for all the network models analysed in this work. In this case
we use for all models n = 100
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